


Overview


Whether you've read the whitepaper
or are starting here, the concepts from both these whitepapers are important foundational starting

points for your composable journey.

Here we delve into why it’s important to identify the core architectural and design principles that will steer a
MACH ecosystem. These principles serve as the bedrock upon which a composable architecture is constructed,
and they guide in making consistent and effective decisions throughout the development and operational lifecycle.
These principles are crafted to ensure seamless interaction, scalability, and resilience in an ever-evolving
business landscape.

“How to evaluate and integrate composable solutions: MACH
Interoperability #1”

Understanding composable
architectures 

Key concepts, patterns, non-functionals and assumptions


/01

Architectural and Design Principles


Key Architectural Concepts


Event Driven Architecture


Domain Services


Microservices Patterns


Hexagonal Architecture


Backend for Frontend and the Experience Layer


Decomposition Patterns

2


3


3


9


10


10


11


13

https://machalliance.org/content-hub/how-to-evaluate-and-integrate-composable-solutions-mach-interoperability-1
https://machalliance.org/content-hub/how-to-evaluate-and-integrate-composable-solutions-mach-interoperability-1


/02

Architectural and Design Principles
The following section will describe these principles in detail, providing the rationale and implications for each.

IDEALS pattern:

 Simple components 
Simple components consisting of few subdomains 
are easier to understand and maintain than  
complex components

 Team autonomy 
A team needs to be able to develop, test and  
deploy their software independently of  
other teams.

 Fast deployment pipeline 
Fast feedback and high deployment frequency are 
essential and are enabled by a fast deployment 
pipeline, which in turn requires components that are 
fast to build and test

 Support multiple technology stacks 
Subdomains are sometimes implemented using a 
variety of technologies; and developers need to 
evolve the application’s technology stack, e.g. use 
current versions of languages and frameworks.


 Interface segregation

Instead of an interface with all possible methods and 
data clients might need, there should be separate 
interfaces catering to the specific needs of each type 
of client. I.e. the Backend for Frontend (BFF) 
described below. This is true for all touchpoints to all 
components, not just experiences and this is where 
the ports and adapters come in. Also described 
below

 Deployability 

Ensure that the teams take responsibility for the 
services they provide and that their consumers are 
happy with the service levels and the availability

 Event-driven

An event driven architecture is more able to meet the 
scalability and performance requirements of a 
composable business

 Availability over consistency

The CAP (Consistency, Availability, Partition 
tolerance - https://en.wikipedia.org/wiki/
CAP_theorem) theorem states that as you partition a 
network you can choose either availability or 
consistency of data (“CAP theorem”). As a 
composable or MACH architecture is by definition 
partitioning the network through the use of 
microservices, or modules, an enterprise must make 
a decision on whether to strive for consistency or 
availability of data in the system. Availability means a 
more performant application. A faster website means 
potentially lower bounce rate of your customers and 
a higher Search Engine ranking.

 Loose coupling

When you think of a well run organization, you think 
of departments that are collaborating effectively 
when needed, where communication is efficient. The 
loose coupling in a MACH architecture that makes 
use of concepts such as microservices, domain-
driven design, events and hexagonal ports and 
adapter patterns can be thought of in the same 
terms as that well run organization. This flexible 
setup allows for easy adaptability, resilience, and 
scalability, much like agile departments within an 
organization. Within this architecture, each 
"department" or microservice can work in isolation, 
yet efficiently integrate for mutual goals through 
event-based communication and a boundary-
protecting hexagonal structure. The result is an IT 
infrastructure that enhances business agility, reduces 
costs, and mitigates risk by allowing various 
components to evolve independently without causing 
disruptions across the system

 Single responsibility

As the name suggests, each domain will have a 
single responsibility, and this ensures that we can 
understand and manage a complex architecture. 
This is akin to having specialists in a business 
setting, where each expert focuses on one specific 
area of competence. This specialized focus makes it 
easier to manage, update, and scale individual 
components without impacting the rest of the 
system.


https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://docs.google.com/document/d/14V_cQEdD90d91oBnLVE1jcK7omaNBSyVwR1GM667dPY/edit#heading=h.635tgx4dx1hk


/03

Event Driven Architecture


Being able to respond swiftly and efficiently to evolving demands is vital. An event-driven architecture (EDA) 
is designed with exactly this kind of responsiveness in mind. In simple terms, this kind of architecture is built 
around the detection and reaction to events or changes that occur in a system or an external environment. 
An event refers to a significant change in state: for instance, the placing of a customer order, or the updating 
of a product’s inventory status.


In an event-driven setup, different components or services in the system communicate with each other 
through the emission and reception of events. Instead of being continuously active, services are lying in wait, 
springing into action only when they receive notifications of events that are relevant to them. This ensures an 
efficient use of system resources, and allows for a more flexible, decoupled architecture where components 
can operate independently of each other while still collaborating seamlessly. The benefits of this approach 
are manifold. It fosters a dynamic environment where the system can swiftly respond to changes, paving the 
way for real-time processing and analytical capabilities. Moreover, it enhances scalability, allowing our 
enterprise to grow and adapt without being held back by rigid structural limitations.


As we navigate further, we will delve deeper into the strategic advantages this approach and these principles 
brings to an enterprise: the nimbleness to adapt to market shifts dynamically while maintaining a high degree 
of reliability and robustness in operations. Implementing an event-driven architecture is, therefore, not just a 
technological enhancement, but a strategic imperative, putting us firmly on the path to operational 
excellence and heightened responsiveness to business triggers and customer demands.

There are many architectural patterns that enable an event driven architecture. Here are some of the 
prominent patterns that we have found to facilitate a MACH architecture. 

Key Architectural Concepts

CONSUMER

producer

Event Notification

Event Notification

A source service sends a notification to interested consumers that an event has occurred,  
without expecting a response.

CONSUMER

producer

event with data payload

Event-Carried State Transfer

Instead of merely notifying about an event, the event carries a data payload, allowing 
consumers to act without needing to query the producer.

event log

service

emits events

Event sourcing

Changes to the application state are stored as a sequence of events. These events can then 
be replayed to recreate the system state, which is particularly useful for system restores, 
auditing, and debugging.

replay events



/04

The event driven architecture excels in business verticals that require high levels of scalability, real-time data 
processing and systems integration. Good targets for MACH and composable architectures. 


We can see that e-commerce, with its inventory management requirements, personalized customer 
experience and multiple collaborating systems is a good candidate for EDA. Financial services such as 
banking or insurance that deal with lots of data movement, stock trading and real-time transaction 
processing coupled with fraud detection that is often delegated to a third party system can benefit from EDA. 
Internet of Things, Healthcare and Supply chain and Logistics all have real-time elements or are integrated 
with multiple systems and need to be performant and reactive.

Examples

service

writes

Command Query Responsibility Segregation (CQRS)

This pattern separates read and write operations. It pairs well with event 
sourcing, where the write model generates events, and the read model 
consumes those events to provide a real-time view of the data.

command

query

data source

matrerialized view

service

events

Materialized View

This pattern maintains a view of data shaped specifically for querying by listening to the 
event stream and updating itself. This is sometimes used in conjunction with CQRS.

transaction 1

success

Saga Pattern

In distributed systems, long-running transactions are broken into smaller, isolated 
transactions (or sagas). If a saga fails, compensating sagas can reverse the changes.

compensate

compensate

compensate

success

failed

transaction 2

transaction 4

transaction 3



/05

The event driven architecture excels in business verticals that require high levels of scalability, real-time data
processing and systems integration. Good targets for MACH and composable architectures.

We can see that e-commerce, with its inventory management requirements, personalized customer
experience and multiple collaborating systems is a good candidate for EDA. Financial services such as
banking or insurance that deal with lots of data movement, stock trading and real-time transaction
processing coupled with fraud detection that is often delegated to a third party system can benefit from EDA.
Internet of Things, Healthcare and Supply chain and Logistics all have real-time elements or are integrated
with multiple systems and need to be performant and reactive.

Examples

Event Choreography

Multiple services collaborate by emitting and listening to events without a
centralized coordinator. Each service decides how to react to an event.

producer 1

event

consumer 1

event

producer 2

event

consumer 2

event

Publish-Subscribe (Pub-Sub)

Producers (publishers) create messages without knowledge
of subscribers. Subscribers express interest in certain events
and process the events they receive.

message broker

orchestration

command 1

Event Orchestration

A central service or orchestrator takes responsibility for sequencing business
processes by directing other services to execute using commands.

command 2 command 1

service 1 service 2 service 1

Event Stream

A continuous flow of events is provided, often with the help of platforms like
Apache Kafka. Consumers can subscribe to, process, and potentially store
these events.

producer

event stream event stream event stream

consumer
1

consumer

2

consumer

3

service 1

service 3

emits event a

service 2

emits event b

emits event D emits event c



/06

Polling or Long Polling

Services or clients periodically check for new events. With long polling,  
the server holds the request until new data is available.

service (polling)

response

data source

delayed response delayed request

service (long polling)

request

Polling or Long Polling

Ensures that even if an event is received multiple times,  
the outcome remains consistent.

producer

single processing

consumer

duplicate events

Shared Data/Database

Although not considered a "pure" event-driven pattern, it involves multiple  
services reacting to changes in a shared data source.

database

read/write read/write read/write

service 1 service 2 service 1

consumer

producer

call back (http request)

Webhooks

Producers call consumer-specified HTTP endpoints (callbacks) to notify about  
event occurrences.

consumer

producer

events

Dead Letter Queue

This pattern manages events that could not be processed, ensuring system resilience 
and providing a way to diagnose processing issues.

dead letter queue

failed events



/07

Domain Services
Domain services are a well understand aspect of Domain Driven , business functionality and data are 
encapsulated in standalone units, each focusing on a single responsibility that corresponds to a specific concept 
within the enterprise. Such a unit is often termed as a 'domain service' and can be composed of one or multiple 
microservices. Let's break down this idea further for better understanding:

 Encapsulation of Business Functionality and Data

By encapsulating both business functionality  
and data into a distinct unit (e.g. an order, or the 
concept of a customer), the pattern aims to create  
a self-contained environment that handles a specific 
role. This offers several benefits including ease  
of maintenance, better testability, and improved  
data integrity.

 Standalone Unit with a Single Responsibility

The concept of single responsibility in this context 
means that each unit or domain service has one, 
and only one, reason to change. For example, if a 
unit is designed to handle search functionality, all 
logic and data related to searching would be 
contained within that unit. This promotes a 
separation of concerns and makes it easier to 
manage and extend functionalities.


 Centered Around a Single Concept in the Enterprise

Each unit is aligned with a distinct business concept 
or domain within the enterprise, such as customer 
management, vaccine management, search, or 
order processing. By organizing services around 
business capabilities, this approach ensures better 
alignment between the technical architecture and 
business goals, making it easier to adapt to changes 
in business requirements

 Formed by One or Multiple Microservices

Although a domain service can be a single 
microservice, it's often beneficial to use multiple 
interacting microservices to fulfill complex 
responsibilities. For instance, an "Order" domain 
service could involve microservices for payment 
processing, inventory checks, and shipping logistics. 
These can work together to provide a holistic 
solution for order handling.


Real-world Examples: Search or eCommerce order

For example, a "Search" domain service may encapsulate all functionalities related to keyword matching, 
filters, and sorting. It could be made up of multiple microservices, each responsible for one part of the search 
experience, such as text analysis, query optimization, or results ranking.



Similarly, an "Order" domain service could encapsulate functionalities like payment validation, inventory 
checks, and order dispatch. This could involve multiple microservices that handle these responsibilities 
individually but collaborate to provide a unified order processing mechanism.



By adhering to a domain driven design principle, we can create a flexible, scalable, and robust system 
architecture that aligns well with our complex business requirements while enabling efficient development, 
deployment, and maintenance.




/08

Microservices Patterns

Hexagonal Architecture

A common design pattern for microservices architectures is the hexagonal architecture that is often deployed
for the domain services. A Hexagonal Architecture, also known as the Ports and Adapters pattern, is a
modern architectural approach designed to create flexible, maintainable, and easily testable software
systems. The idea is to isolate the core business logic of an application from external concerns like user
interfaces, databases, and other systems. This way, changes in one area have minimal impact on others,
making the system more resilient, scalable and adaptable.

Examples of Hexagonal architectures tend to include more complex applications where the added layers
of abstraction allow making significant changes in underlying components while leaving other dependent
applications and services untouched since the service adapters remain the same. These would include
applications such as commerce or finance.



Ports & Adapters

Imagine "ports" as entry and exit points for information in the application. These are like the doors and
windows of a building, controlling what comes in and what goes out. They define the interactions that the
application needs to have with the outside world, be it receiving data from a user interface or sending it
to a database.

Adapters are like translators that convert external requests into a format that the application can understand,
and vice versa. They link the ports to the actual technologies being used, such as a specific type of database
or user interface. This means that if you decide to change from one database to another, only the adapter
needs to be replaced or updated, not the entire system.



Data Access and Service Access

Data Access refers to how the application retrieves and stores information in databases. Service Access
pertains to how the application communicates with external services like payment gateways or email
services. In a hexagonal architecture, both are abstracted away from the core business logic, meaning they
can be changed or updated independently without affecting the main functionalities of the system.


RE
ST

Po
rt

RE
ST

ad
ap

te
r D

ata
access

adapter
Service

adapter

database

(SQL/No SQL)

third party

service

security

loggingobservability

Service
port

D
ata

access

port



/09

Backend for Frontend and the Experience Layer

The concept of an Experience API or Backend For Frontend (BFF) represents a pivotal architectural pattern 
aimed at tailoring data and services to specific user experiences or clients, like mobile apps, web apps,  
or other consumer endpoints. 



This approach addresses several challenges in modern application development, including data 
transformation, client-specific logic, and the removal of point-to-point integration.

Data Transformation

One of the primary roles of an Experience API/BFF is to transform domain data into a format that is readily 
consumable by its intended audience. Imagine a scenario where a common data source provides 
comprehensive information, but different client apps only require specific subsets or forms of this data. The 
BFF acts as an intermediary layer that takes the domain data and transforms it into the specific shape and 
format needed by each client. This streamlines data processing on the client side, making the application 
more efficient and user-friendly.



Common Data Source or Set of Data Sources

The BFF architecture is designed to work with a common data source or a set of data sources. This 
centralized approach simplifies data management by reducing redundancy and ensuring data consistency. 
Whether the underlying data is sourced from databases, third-party APIs, or other services, the BFF brings it 
all together, offering a unified layer for data access and transformation.



Removing Point-to-Point Integration

Traditional point-to-point integration makes individual services tightly coupled with each other, complicating 
scalability and maintainability. Any change in one service can lead to a cascade of required changes in 
others. By introducing an Experience API/BFF layer, this issue is mitigated. The BFF serves as a single point 
of interaction for client applications, translating their various needs into appropriate calls to backend services. 
This eliminates the necessity for each client to integrate directly with multiple backend services, thereby 
reducing complexity and coupling.


back end for front end

request data request data

microservice

1

microservice

2

microservice

3

front end

request

request data



/10

Decomposition Patterns

One of the primary goals of composable architectures when moving away from a monolithic architecture  
is decomposition - namely the task of breaking down applications into smaller chunks in order to enable 
domain-driven design and the patterns we have discussed above.


The two primary approaches are:


Decompose by Subdomain

The approach breaks down the system 
into microservices that correspond to 
specific subdomains and is more suited 
for complex environments where 
specific functions may be reused in 
multiple contexts.


Decompose by Business Capability

This approach requires looking at various 
business capabilities and grouping them 
along functional lines based on what a 
company does - usually breaking down into 
tasks and functions.

Which is better?


The “right” approach often depends on the corporate culture and how closely the engineering teams 
understand the core business requirements (or vice-versa - how the business understands the 
technology enablement within their organization).


Regardless of the approach taken, one of the key tasks is translation - if you choose to take a 
subdomain-based approach, you may need to help the business understand why this pattern was 
chosen - and vice-versa. 


It may be difficult to understand the differences in the two approaches, so let us consider a retail B2C 
ecommerce system. A business capability-based approach might segment an application into various 
business capabilities

 Product catalo
 Pricing module (with the ability to create discounts by product type, brand, date/time, etc.
 Inventory managemen
 Shippin
 Customer informatio
 Order managemen
 Etc.


If the requirement is now to add B2B capabilities you might need additional functionality such as

 Account management and permissions (including the ability to define who can administer the ability 
to make orders on behalf of their organization

 B2B Pricing (you may have different tiers of distributors or shipping rates and custom pricing for 
each

 Organization information (rolling up individual business units and individuals ordering)


In all those cases around B2B user management, pricing and order management these domains  
would interact and behave vastly differently than the similar function for a B2C customer and these 
existing business capability functions would need to be duplicated or heavily modified to accommodate 
those changes. 



/11

In this case, if you were implementing a B2C ecommerce system but wish to have the option of adding 
B2B functionality at a later date, a subdomain-based approach might be a better option to start with, 
since elements around customers and pricing such as roles could be broken down into smaller, reusable 
components and repurposed cleanly for the separate B2C and B2B use cases. It is added work up front, 
but would pay dividends down the road as the use case expands. 


A subdomain-based approach tends to look across business capabilities in order to identify common 
patterns and services, but requires a skilled evaluation in order to determine if these services may be re-
used in multiple contexts in order to justify that effort and approach. For smaller applications where the 
problem set is defined (and will not expand), a business capability-based approach may be sufficient.


This whitepaper was developed by the MACH Alliance 

Interoperability Task Force:

Adam Peter Nielsen


Chris Bach 

Daniele Stroppa


Dom Selvon 

Filip Rakowski

Mark Demeny 

Melanie Richards 

Roberto Carrera 

Subhasri Vadyar

info@machalliance.org  
www.machalliance.org


Stay updated with the latest news and content from the MACH Alliance.

Sign up for our newsletter here

Credits

Summary
As the MACH architectural paradigm evolves, it brings forth more intricate yet robust patterns, emphasizing the 
need for a community-driven approach to navigate its complexities. The MACH Alliance is blazing the trail with 
this series of whitepapers defining concepts, principles and architectural blueprints and is a critical resource for 
professionals seeking to leverage Microservices, API-first, Cloud-native, and Headless technologies. 


We encourage readers to dive deep into the evolving landscape of composable architectures, inviting 
contributions of thoughts and opinions to enrich the collective understanding and advancement within the 
MACH Alliance. This is a community and this is a clarion call to engage, learn, and contribute to a rapidly 
maturing field.

https://www.linkedin.com/in/adampeternielsen/
https://www.linkedin.com/in/christianbachdk/
https://www.linkedin.com/in/danielestroppa/
https://www.linkedin.com/in/dom-selvon-1488958/
https://www.linkedin.com/in/filip-rakowski-a43671129/
https://www.linkedin.com/in/mdemeny/
https://www.linkedin.com/in/richardsmelanie/
https://www.linkedin.com/in/robertocarreramaldonado/
https://www.linkedin.com/in/subhasri-vadyar/
http://www.machalliance.org/
https://register.machalliance.org/newslettersignup?
https://www.linkedin.com/company/machalliance/
https://www.linkedin.com/company/machalliance/
https://twitter.com/MACHAlliance
https://twitter.com/MACHAlliance



